Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718303

RESUMEN

Hybrid genome-mining/15N-NMR was used to target compounds containing piperazate (Piz) residues, leading to the discovery of caveamides A (1) and B (2) from Streptomyces sp. strain BE230, isolated from New Rankin Cave (Missouri). Caveamides are highly dynamic molecules containing an unprecedented ß-ketoamide polyketide fragment, two Piz residues, and a new N-methyl-cyclohexenylalanine residue. Caveamide B (2) exhibited nanomolar cytotoxicity against several cancer cell lines and nanomolar antimicrobial activity against MRSA and E. coli.

2.
J Org Chem ; 87(24): 16847-16850, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36475686

RESUMEN

The structure of petrichorin C1 (4) converted from petrichorin C (3) was determined using NMR spectroscopy and X-ray crystallography. The chemical stability of petrichorins A and C (1 and 3) was investigated by NMR spectroscopy, X-ray crystallography, and calculations.


Asunto(s)
Modelos Moleculares , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética/métodos
3.
Proc Natl Acad Sci U S A ; 119(17): e2117941119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439047

RESUMEN

Rare actinomycetes represent an underexploited source of new bioactive compounds. Here, we report the use of a targeted metabologenomic approach to identify piperazyl compounds in the rare actinomycete Lentzea flaviverrucosa DSM 44664. These efforts to identify molecules that incorporate piperazate building blocks resulted in the discovery and structural elucidation of two dimeric biaryl-cyclohexapeptides, petrichorins A and B. Petrichorin B is a symmetric homodimer similar to the known compound chloptosin, but petrichorin A is unique among known piperazyl cyclopeptides because it is an asymmetric heterodimer. Due to the structural complexity of petrichorin A, solving its structure required a combination of several standard chemical methods plus in silico modeling, strain mutagenesis, and solving the structure of its biosynthetic intermediate petrichorin C for confident assignment. Furthermore, we found that the piperazyl cyclopeptides comprising each half of the petrichorin A heterodimer are made via two distinct nonribosomal peptide synthetase (NRPS) assembly lines, and the responsible NRPS enzymes are encoded within a contiguous biosynthetic supercluster on the L. flaviverrucosa chromosome. Requiring promiscuous cytochrome p450 crosslinking events for asymmetric and symmetric biaryl production, petrichorins A and B exhibited potent in vitro activity against A2780 human ovarian cancer, HT1080 fibrosarcoma, PC3 human prostate cancer, and Jurkat human T lymphocyte cell lines with IC50 values at low nM levels. Cyclic piperazyl peptides and their crosslinked derivatives are interesting drug leads, and our findings highlight the potential for heterodimeric bicyclic peptides such as petrichorin A for inclusion in future pharmaceutical design and discovery programs.


Asunto(s)
Actinobacteria , Actinomycetales , Streptomyces , Actinobacteria/genética , Actinomycetales/genética , Familia de Multigenes , Péptidos Cíclicos/genética , Streptomyces/genética
4.
J Nat Prod ; 85(1): 47-55, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35086337

RESUMEN

Polycyclic tetramate macrolactams (PTMs) are a class of structurally complex hybrid polyketide-nonribosomal peptide (PK-NRP) natural products produced by diverse bacteria. Several PTMs display pharmaceutically interesting bioactivities, and the early stages of PTM biosynthesis involving polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) enzymology are well studied. However, the timing and mechanisms of post PKS-NRPS oxidations by P450 monooxygenases encoded in PTM biosynthetic gene clusters (BGCs) remain poorly characterized. Here we demonstrate that CftA, encoded in clifednamide-type PTM BGCs, is a multifunctional P450 monooxygenase capable of converting the C29-C30 ethyl side chain of ikarugamycin to either a C29-C30 methyl ketone or a C29-C30 hydroxymethyl ketone through C-H bond activation, resulting in the formation of clifednamide A or clifednamide C, respectively. We also report the complete structure of clifednamide C solved via multidimensional NMR (COSY, HSQC, HMBC, NOESY, and TOCSY) using material purified from an engineered Streptomyces strain optimized for production. Finally, the in vitro reconstitution of recombinant CftA catalytic activity revealed the oxidation cascade for sequential conversion of ikarugamycin to clifednamide A and clifednamide C. Our findings confirm prior genetics-based predictions on the origins of clifednamide complexity via P450s encoded in PTM BGCs and place CftA into a growing group of multifunctional P450s that tailor PTM natural products through late-stage regioselective C-H bond activation.


Asunto(s)
Oxigenasas de Función Mixta , Policétidos , Carbono/química , Catálisis , Hidrógeno/química , Oxigenasas de Función Mixta/metabolismo , Familia de Multigenes , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Sintasas Poliquetidas/genética , Policétidos/química , Policétidos/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34326261

RESUMEN

Streptomyces genomes harbor numerous, biosynthetic gene clusters (BGCs) encoding for drug-like compounds. While some of these BGCs readily yield expected products, many do not. Biosynthetic crypticity represents a significant hurdle to drug discovery, and the biological mechanisms that underpin it remain poorly understood. Polycyclic tetramate macrolactam (PTM) antibiotic production is widespread within the Streptomyces genus, and examples of active and cryptic PTM BGCs are known. To reveal further insights into the causes of biosynthetic crypticity, we employed a PTM-targeted comparative metabologenomics approach to analyze a panel of S. griseus clade strains that included both poor and robust PTM producers. By comparing the genomes and PTM production profiles of these strains, we systematically mapped the PTM promoter architecture within the group, revealed that these promoters are directly activated via the global regulator AdpA, and discovered that small promoter insertion-deletion lesions (indels) differentiate weaker PTM producers from stronger ones. We also revealed an unexpected link between robust PTM expression and griseorhodin pigment coproduction, with weaker S. griseus-clade PTM producers being unable to produce the latter compound. This study highlights promoter indels and biosynthetic interactions as important, genetically encoded factors that impact BGC outputs, providing mechanistic insights that will undoubtedly extend to other Streptomyces BGCs. We highlight comparative metabologenomics as a powerful approach to expose genomic features that differentiate strong, antibiotic producers from weaker ones. This should prove useful for rational discovery efforts and is orthogonal to current engineering and molecular signaling approaches now standard in the field.


Asunto(s)
Antibacterianos/metabolismo , Genómica , Streptomyces/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Regiones Promotoras Genéticas , Streptomyces/genética
6.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303657

RESUMEN

Here, we report the draft genome sequences of two related Streptomyces sp. strains, JV180 and SP18CM02. Despite their isolation from soils in Connecticut and Missouri (USA), respectively, they are strikingly similar in gene content. Both belong to the Streptomyces griseus clade and harbor several secondary metabolite biosynthetic gene clusters.

7.
Proc Natl Acad Sci U S A ; 117(29): 17195-17203, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32606248

RESUMEN

The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.


Asunto(s)
Actinobacteria/genética , Antivirales/farmacología , Genoma Bacteriano , Macrólidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/metabolismo , Actinobacteria/metabolismo , Secuencia de Aminoácidos , Antivirales/química , Antivirales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Macrólidos/química , Macrólidos/metabolismo , Modelos Moleculares , Conformación Proteica , Homología de Secuencia , Sirolimus/química , Sirolimus/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
8.
ACS Chem Biol ; 14(4): 696-703, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30921511

RESUMEN

Piperazate (Piz) is a nonproteinogenic amino acid noted for its unusual N-N bond motif. Piz is a proline mimic that imparts conformational rigidity to peptides. Consequently, piperazyl molecules are often bioactive and desirable for therapeutic exploration. The in vitro characterization of Kutzneria enzymes KtzI and KtzT recently led to a biosynthetic pathway for Piz. However, Piz anabolism in vivo has remained completely uncharacterized. Herein, we describe the systematic interrogation of actinobacterial Piz metabolism using a combination of bioinformatics, genetics, and select biochemistry. Following studies in Streptomyces flaveolus, Streptomyces lividans, and several environmental Streptomyces isolates, our data suggest that KtzI-type enzymes are conditionally dispensable for Piz production. We also demonstrate the feasibility of Piz monomer production using engineered actinobacteria for the first time. Finally, we show that some actinobacteria employ fused KtzI-KtzT chimeric enzymes to produce Piz. Our findings have implications for future piperazyl drug discovery, pathway engineering, and fine chemical bioproduction.


Asunto(s)
Aminoácidos/química , Piridazinas/química , Aminoácidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional , Cinética , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Mutación , Piridazinas/metabolismo , Streptomyces/genética , Streptomyces/aislamiento & purificación , Streptomyces/metabolismo
9.
Genome Announc ; 6(1)2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29301882

RESUMEN

Here, we report the draft genome sequence of Streptomyces sp. JV178, a strain originating from Connecticut (USA) garden soil. This strain produces the polycyclic tetramate macrolactam compounds clifednamides A and B. The draft genome contains 10.65 Mb, 9,045 predicted protein coding sequences, and several natural product biosynthetic loci.

10.
ACS Synth Biol ; 7(2): 357-362, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29249153

RESUMEN

Polycyclic tetramate macrolactam (PTM) natural products are produced by actinomycetes and other bacteria. PTMs are often bioactive, and the simplicity of their biosynthetic clusters make them attractive for bioengineering. Clifednamide-type PTMs from Streptomyces sp. strain JV178 contain a distinctive ketone group, suggesting the existence of a novel PTM oxidizing enzyme. Here, we report the new cytochrome P450 enzyme (CftA) is required for clifednamide production. Genome mining was used to identify several new clifednamide producers, some having improved clifednamide yields. Using a parallel synthetic biology approach, CftA isozymes were used to engineer the ikarugamycin pathway of Streptomyces sp. strain NRRL F-2890 to yield clifednamides. Further, we observed that strong CftA expression leads to the production of a new PTM, clifednamide C. We demonstrate the utility of both genome mining and synthetic biology to rapidly increase clifednamide production.


Asunto(s)
Proteínas Bacterianas , Sistema Enzimático del Citocromo P-450 , Lactamas/metabolismo , Ingeniería Metabólica , Streptomyces , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Isoenzimas/biosíntesis , Isoenzimas/genética , Streptomyces/genética , Streptomyces/metabolismo , Biología Sintética
11.
Angew Chem Int Ed Engl ; 56(46): 14360-14382, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-28439959

RESUMEN

Upon bacterial infection, one of the defense mechanisms of the host is the withdrawal of essential metal ions, in particular iron, which leads to "nutritional immunity". However, bacteria have evolved strategies to overcome iron starvation, for example, by stealing iron from the host or other bacteria through specific iron chelators with high binding affinity. Fortunately, these complex interactions between the host and pathogen that lead to metal homeostasis provide several opportunities for interception and, thus, allow the development of novel antibacterial compounds. This Review focuses on iron, discusses recent highlights, and gives some future perspectives which are relevant in the fight against antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Infecciones Bacterianas/metabolismo , Hierro/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Infecciones Bacterianas/inmunología , Hemo/metabolismo , Interacciones Huésped-Patógeno , Humanos , Pruebas de Sensibilidad Microbiana
12.
J Antibiot (Tokyo) ; 69(1): 15-25, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26328935

RESUMEN

Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus methylation remain poorly understood. In addition, the model for non-ribosomal peptide synthetase assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it with the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analyzed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery.


Asunto(s)
Actinobacteria/metabolismo , Dipéptidos/biosíntesis , Compuestos Organofosforados/metabolismo , Streptomyces/metabolismo , Actinobacteria/genética , Secuencia de Aminoácidos , Aminobutiratos/química , Aminobutiratos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Estructura Molecular , Streptomyces/genética , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
13.
Appl Environ Microbiol ; 80(15): 4692-701, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24837391

RESUMEN

Actinobacteria in the genus Streptomyces are critical players in microbial communities that decompose complex carbohydrates in the soil, and these bacteria have recently been implicated in the deconstruction of plant polysaccharides for some herbivorous insects. Despite the importance of Streptomyces to carbon cycling, the extent of their plant biomass-degrading ability remains largely unknown. In this study, we compared four strains of Streptomyces isolated from insect herbivores that attack pine trees: DpondAA-B6 (SDPB6) from the mountain pine beetle, SPB74 from the southern pine beetle, and SirexAA-E (SACTE) and SirexAA-G from the woodwasp, Sirex noctilio. Biochemical analysis of secreted enzymes demonstrated that only two of these strains, SACTE and SDPB6, were efficient at degrading plant biomass. Genomic analyses indicated that SACTE and SDPB6 are closely related and that they share similar compositions of carbohydrate-active enzymes. Genome-wide proteomic and transcriptomic analyses revealed that the major exocellulases (GH6 and GH48), lytic polysaccharide monooxygenases (AA10), and mannanases (GH5) were conserved and secreted by both organisms, while the secreted endocellulases (GH5 and GH9 versus GH9 and GH12) were from diverged enzyme families. Together, these data identify two phylogenetically related insect-associated Streptomyces strains with high biomass-degrading activity and characterize key enzymatic similarities and differences used by these organisms to deconstruct plant biomass.


Asunto(s)
Celulosa/metabolismo , Insectos/microbiología , Lignina/metabolismo , Filogenia , Streptomyces/aislamiento & purificación , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Celulasas/genética , Celulasas/metabolismo , Herbivoria , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Streptomyces/clasificación , Streptomyces/enzimología , Streptomyces/genética , beta-Manosidasa/genética , beta-Manosidasa/metabolismo
14.
Org Lett ; 12(20): 4652-4, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20843016

RESUMEN

A targeted polymerase chain reaction (PCR)-based screening approach was used to identify candidate polycyclic tetramate macrolactam (PTM) biosynthetic gene clusters in environmental Streptomyces isolates. Isolation and characterization of the small molecules produced by one of the strains confirmed the production of two new PTMs (clifednamides A, 4, and B, 5) and, more generally, the utility of using a targeted approach for the discovery of new members of this interesting class.


Asunto(s)
Lactamas Macrocíclicas/química , Compuestos Policíclicos/química , Streptomyces/química , Lactamas Macrocíclicas/metabolismo , Estructura Molecular , Familia de Multigenes , Iniciación de la Cadena Peptídica Traduccional/genética , Streptomyces/metabolismo
15.
Proc Natl Acad Sci U S A ; 107(26): 11692-7, 2010 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-20547882

RESUMEN

A combination of small molecule chemistry, biosynthetic analysis, and genome mining has revealed the unexpected conservation of polycyclic tetramate macrolactam biosynthetic loci in diverse bacteria. Initially our chemical analysis of a Streptomyces strain associated with the southern pine beetle led to the discovery of frontalamides A and B, two previously undescribed members of this antibiotic family. Genome analyses and genetic manipulation of the producing organism led to the identification of the frontalamide biosynthetic gene cluster and several biosynthetic intermediates. The biosynthetic locus for the frontalamides' mixed polyketide/amino acid structure encodes a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), which resembles iterative enzymes known in fungi. No such mixed iterative PKS-NRPS enzymes have been characterized in bacteria. Genome-mining efforts revealed strikingly conserved frontalamide-like biosynthetic clusters in the genomes of phylogenetically diverse bacteria ranging from proteobacteria to actinomycetes. Screens for environmental actinomycete isolates carrying frontalamide-like biosynthetic loci led to the isolation of a number of positive strains, the majority of which produced candidate frontalamide-like compounds under suitable growth conditions. These results establish the prevalence of frontalamide-like gene clusters in diverse bacterial types, with medicinally important Streptomyces species being particularly enriched.


Asunto(s)
Bacterias/metabolismo , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/metabolismo , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Animales , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacología , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , Escarabajos/microbiología , ADN Bacteriano/genética , Microbiología Ambiental , Genes Bacterianos , Lactamas Macrocíclicas/farmacología , Estructura Molecular , Familia de Multigenes , Mutación , Ophiostoma/efectos de los fármacos , Filogenia , Streptomyces/genética , Streptomyces/aislamiento & purificación , Streptomyces/metabolismo
16.
Org Lett ; 12(4): 716-9, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20095633

RESUMEN

Bacterial acyl-homoserine lactones upregulated an uncharacterized gene cluster (bta) in Burkholderia thailandensis E264 to produce an uncharacterized polar antibiotic. The antibiotic is identified as a mixture of four bactobolins. Annotation of the bta cluster allows us to propose a biosynthetic scheme for bactobolin and reveals unusual enzymatic reactions for further study.


Asunto(s)
Antibacterianos/aislamiento & purificación , Benzopiranos/aislamiento & purificación , Burkholderia/metabolismo , Percepción de Quorum , Acil-Butirolactonas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Benzopiranos/química , Benzopiranos/metabolismo , Burkholderia/química , Regulación Bacteriana de la Expresión Génica , Humanos
17.
Nature ; 459(7248): 871-4, 2009 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-19516340

RESUMEN

Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp(3))-C(sp(3)) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(ii)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.


Asunto(s)
Aminobutiratos/química , Aminobutiratos/metabolismo , Dioxigenasas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Dioxigenasas/química , Dioxigenasas/genética , Escherichia coli , Formiatos/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Organofosfonatos/metabolismo
18.
J Biol Chem ; 283(34): 23161-8, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18544530

RESUMEN

Phosphonic acids encompass a common yet chemically diverse class of natural products that often possess potent biological activities. Here we report that, despite the significant structural differences among many of these compounds, their biosynthetic routes contain an unexpected common intermediate, 2-hydroxyethyl-phosphonate, which is synthesized from phosphonoacetaldehyde by a distinct family of metal-dependent alcohol dehydrogenases (ADHs). Although the sequence identity of the ADH family members is relatively low (34-37%), in vitro biochemical characterization of the homologs involved in biosynthesis of the antibiotics fosfomycin, phosphinothricin tripeptide, and dehydrophos (formerly A53868) unequivocally confirms their enzymatic activities. These unique ADHs have exquisite substrate specificity, unusual metal requirements, and an unprecedented monomeric quaternary structure. Further, sequence analysis shows that these ADHs form a monophyletic group along with additional family members encoded by putative phosphonate biosynthetic gene clusters. Thus, the reduction of phosphonoacetaldehyde to hydroxyethyl-phosphonate may represent a common step in the biosynthesis of many phosphonate natural products, a finding that lends insight into the evolution of phosphonate biosynthetic pathways and the chemical structures of new C-P containing secondary metabolites.


Asunto(s)
Organofosfonatos/química , Organofosfonatos/metabolismo , Secuencia de Aminoácidos , Aminobutiratos/farmacología , Antibacterianos/farmacología , Bacterias/metabolismo , Dipéptidos/farmacología , Fosfomicina/farmacología , Espectroscopía de Resonancia Magnética , Metales/química , Datos de Secuencia Molecular , Péptidos/farmacología , Filogenia , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
19.
Nat Chem Biol ; 3(8): 480-5, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632514

RESUMEN

Phosphinothricin tripeptide (PTT, phosphinothricylalanylalanine) is a natural-product antibiotic and potent herbicide that is produced by Streptomyces hygroscopicus ATCC 21705 (ref. 1) and Streptomyces viridochromogenes DSM 40736 (ref. 2). PTT has attracted widespread interest because of its commercial applications and unique phosphinic acid functional group. Despite intensive study since its discovery in 1972 (see ref. 3 for a comprehensive review), a number of steps early in the PTT biosynthetic pathway remain uncharacterized. Here we report a series of interdisciplinary experiments involving the construction of defined S. viridochromogenes mutants, chemical characterization of accumulated intermediates, and in vitro assay of selected enzymes to examine these critical steps in PTT biosynthesis. Our results indicate that early PTT biosynthesis involves a series of catalytic steps that to our knowledge has not been described so far, including a highly unusual reaction for carbon bond cleavage. In sum, we define a pathway for early PTT biosynthesis that is more complex than previously appreciated.


Asunto(s)
Antibacterianos/farmacología , Péptidos/farmacología , Aminobutiratos/química , Antibacterianos/química , Carbono/química , Química Farmacéutica/métodos , Cromatografía Liquida/métodos , Herbicidas/farmacología , Espectroscopía de Resonancia Magnética , Espectrometría de Masas/métodos , Modelos Químicos , Datos de Secuencia Molecular , Mutación , Organofosfonatos/química , Péptidos/química , Streptomyces/metabolismo , Tecnología Farmacéutica/métodos
20.
Chem Biol ; 13(11): 1171-82, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17113999

RESUMEN

Fosfomycin is a clinically utilized, highly effective antibiotic, which is active against methicillin- and vancomycin-resistant pathogens. Here we report the cloning and characterization of a complete fosfomycin biosynthetic cluster from Streptomyces fradiae and heterologous production of fosfomycin in S. lividans. Sequence analysis coupled with gene deletion and disruption revealed that the minimal cluster consists of fom1-4, fomA-D. A LuxR-type activator that was apparently required for heterologous fosfomycin production was also discovered approximately 13 kb away from the cluster and was named fomR. The genes fomE and fomF, previously thought to be involved in fosfomycin biosynthesis, were shown not to be essential by gene disruption. This work provides new insights into fosfomycin biosynthesis and opens the door for fosfomycin overproduction and creation of new analogs via biomolecular pathway engineering.


Asunto(s)
Antibacterianos/biosíntesis , Fosfomicina/biosíntesis , Familia de Multigenes , Streptomyces/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Antibacterianos/farmacología , Clonación Molecular , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fosfomicina/farmacología , Análisis de Secuencia de ADN , Streptomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...